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Energy-Based Control of Axially Translating Beams: Varying
Tension, Varying Speed, and Disturbance Adaptation

Kyung-Jinn Yang, Keum-Shik Hong, and Fumitoshi Matsuno

Abstract—In this brief, the investigational results for a robust
adaptive vibration control of a translating tensioned beam with
a varying traveling speed are presented. The dynamics of beam
and actuator is modeled via the extended Hamilton’s principle, in
which the tension applied to the beam is given as a nonlinear spa-
tiotemporally varying function. The moving beam is divided into
two parts, a controlled span and an uncontrolled span, by a hy-
draulic touch-roll actuator that is located in the middle section of
the beam. The transverse vibration of the controlled span is sup-
pressed by the touch-roll actuator, whereas the vibration of the
uncontrolled span is treated as a disturbance, and the magnitude
of unknown disturbance is estimated. In a proper mathematical
manner, the Lyapunov method is employed to design robust adap-
tive boundary control laws for ensuring the vibration reduction of
the nonlinear time-varying system, and also to ensure the stability
of the closed-loop system. The effectiveness of the proposed con-
troller is demonstrated via numerical simulations.

Index Terms—Axially moving continua, Lyapunov method, ro-
bust adaptive control, stability, uniform ultimate boundedness.

I. INTRODUCTION

THE control problem of axially moving continua occurs
in such high-performance mechanical systems as cranes,

strips in a thin metal-sheet production line, high-rise elevators,
chains and belts, high-speed magnetic tapes, paper sheets under
processing, and deployable robot arms as well. However, un-
wanted vibrations of moving continua due to the flexibility prop-
erty and time-varying conditions restrict the utility of the sys-
tems in many applications, and in particular in high-speed, pre-
cision systems.

For an example, Fig. 1 shows a continuous hot-dip zinc gal-
vanizing process. The steel strips, of order of 1 1.2 m wide by
0.8 3.0-mm thick, are preheated and passed at a constant speed
through a pot of molten zinc at a temperature in the region of
450 C. A zinc film is entrained onto the strip as it emerges
from the pot. In order to achieve the target deposited mass and
maintain it over various process conditions, a pair of air knives,
which direct a long thin wedge-shaped jet of high-velocity air
onto the strip, are generally used to control the deposited mass
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Fig. 1. Vertically moving steel strip in the zinc galvanizing line. (a) Picture
(POSCO, Korea). (b) Schematic.

by stripping out excess zinc back into the pot. The deposited
film solidifies while the strip moves vertically upward, cooling
as it goes, and horizontally for about 40 m, to the gauge which
measures the mass of zinc deposited on the strip surfaces. Here,
two control objectives for the galvanizing line are to improve
the uniformity of the zinc deposit on the strip surfaces and to
reduce the zinc consumption. The transverse movement and vi-
bration of the strip is known to be the main cause of the dif-
ference between the average deposited masses on the right and
left surfaces and the nonuniformity across the surfaces. A regu-
lation problem of deposited mass by adjusting the gap between
the strip and the air knives has been studied [1]. However, a per-
tinent problem there was the lack of a precise knowledge of strip
position due to the vibration of the strip. Many galvanized steel
manufacturers including POSCO (Korea) and U.S. Steel have
attempted to measure the strip position directly by installing
laser transducers near the air knives. However, no long-term suc-
cess has been reported yet, because the high-temperature envi-
ronment makes the transducers unreliable. Thus, as a means of
avoiding use of unreliable transducers, the strip vibrations need
to be directly suppressed by using a more practical and reason-
able method such as active boundary force control of axially
moving continua.

Vibration control schemes for axially moving strings include
[2]–[6] and others. Those for axially moving beams include
[7]–[11], among others. Robust and adaptive control schemes
for hyperbolic distributed systems include [12]–[14]. It is no-
table that most studies were limited either to cases with constant
spatial tension and transport velocity or to nonaxially moving
(stationary) systems. However, in practical situations, the ef-
fects of velocity changes might be significant, and so almost all
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axially moving systems have a varying tension that is a func-
tion of both time and space due to longitudinal accelerations
and gravity, and/or the eccentricity of a support roller, and/or
external disturbances, among other factors [3], [6], [11], [14].
Also, the terminology, boundary control, may not make sense
for axially moving continua when the control input is applied
at an inner point of the span, because the span of interest and
the adjacent span are connected and the vibrations of the adja-
cent span would occur continuously regardless of the exerted
control input [3], [6], [11]. This means, when considering ax-
ially moving continua affected by the adjacent span, how to
handle the effect of the vibrations from the adjacent span also
becomes a very important point in order to obtain an effective
controller for ensuring vibration reduction. Hence, to achieve
better control performance, a novel active controller incorpo-
rating spatiotemporally varying tension, time-varying traveling
velocity, and the vibration effect from the adjacent span should
be investigated.

In this brief, a nonlinear tensioned beam translating at a time-
varying speed is focused on, resulting in a problem formula-
tion, an implementable controller design, and a stability anal-
ysis, under the assumption that the motion of the adjacent span
can be treated as a disturbance to the span of interest. Fig. 2
shows a schematic of the control strategy of an axially moving
beam using a hydraulic touch-roll actuator. The axially moving
beam is divided into two spans, that is, a controlled span and
an uncontrolled span, by a transverse force actuator, as shown
in Fig. 2. The main objective is to suppress the transverse vi-
bration in the controlled span despite the unknown undesired
effect arising from the uncontrolled span. By employing the ex-
tended Hamilton’s principle, dynamics of beam and actuator are
modeled, in which the tension applied to the beam is given as a
nonlinear spatiotemporally varying function due to the traveling
speed variation. Through the dynamic models and the Lyapunov
energy method, a robust adaptive controller effective for vibra-
tion reduction was designed. Since the proposed control laws
depend on the displacement and slope measurements on the con-
trolled span side of the actuator, the vibration suppression of the
axially moving beam can be successfully implemented. Further,
the proposed control scheme can be directly applied to the axi-
ally moving string system.

This brief is structured as follows. In Section II, time-varying
beam equations of motion and their boundary conditions are de-
rived, and the problems are formulated. In Section III, robust
adaptive boundary control laws to suppress the transverse vi-
brations of the beam are derived, and the stability of the closed-
loop system is investigated. In Section IV, simulation results are
demonstrated. Conclusions are given in Section V.

II. BEAM MODEL: PROBLEM FORMULATION

In Fig. 2, the boundary rolls at 0 and are assumed
to be, that is, fixed in the sense that there is no vertical move-
ment, but this allows the beam to move in a horizontal direction.
The two touch rolls, where the control input (force) is exerted,
are located at in the middle section of the beam. Note
that the vibrational energy of the uncontrolled span could not
converge to zero despite the control actuator at , since the

Fig. 2. Schematic of a translating beam subject to an active vibration control.

input control law is generally designed only by considering the
controlled span part. Hence, uniform ultimate boundedness can
be concluded in this case, which will be proved in the sequel.
Such undesired vibration of the uncontrolled span gives the ef-
fect to the hydraulic actuator of an unexpected external force.
Hence, applying a controller designed under ignorance of the
vibrational effect from the adjacent span might bring about an
unforeseen result.

In this brief, the unexpected external force applied to the actu-
ator is treated as an unknown right boundary disturbance on the
controlled span part, since the touch rolls at function as the
right boundary of the controlled span. Such a strategy allows us
to consider only the controlled span part of the beam regardless
of the adjacent span, in designing an effective boundary control
law; then the burden of complicated system analysis when con-
sidering entire spans can be avoided.

From Fig. 2, let be the time, be the spatial coordinate along
the longitude of motion, be the varying axial speed of the
beam, 0 for all , be the transversal displacement
of the beam at spatial coordinate and time , and be the length
of the controlled span. Also, let be the mass per unit length,
be the cross-sectional area, be the coefficient of elasticity,
be the moment of inertia of the beam cross section, and
be the spatiotemporally varying tension applied to the beam. Let
the mass and damping coefficients of the hydraulic actuator be

and , respectively. The control force is applied to the
touch rolls to suppress the transverse vibrations of the axially
moving beam, and denotes the unknown disturbance force
exerted on the actuator due to the transverse vibration of the
uncontrolled span.

The translating continua system has to be analyzed in view
of Eulerian description, since our attention is focused on what
happens on the moving continua in the specific region of interest
as time passes [15], [16]. Hence, the kinetic energy in the trans-
verse direction of the beam should be given with the total deriva-
tive operator (material derivative) with respect to time, due to
the axial speed . That is, the kinetic and potential energies
of the axially moving beam between 0 and including
the hydraulic actuator are given as, respectively

(1)
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(2)

where for notational brevity. The first term on
the right side in (2) is caused by the beam tension, the second
term reflects the strain energy due to axial stiffness, and the last
term comes from the bending moment [9].

The equations of motion and the boundary conditions can be
obtained through Hamilton’s principle. However, in translating
systems, the configurations at the end times of the variational
principle are not prescribed [15], [17]. Hence, new approaches
for d’Alembert’s principle are required, which can be accom-
plished by introducing a general theory for calculating the time
rate of change [15], [18]. That is, by applying the general theory
to the variational principle, the property in the system volume
is converted to that in the control volume. Since the configura-
tions in the control volume are prescribed at specific times in
Eulerian description, a novel extended Hamilton’s principle for
translating continua systems can be established without loss of
the generality of the classic Hamilton’s principle, and which is
given as [4], [15]

(3)
where and

.
From (3), the equations of motion and the boundary condi-

tions of the axially moving beam system of the controlled span
part in Fig. 2 are finally derived as

(4)

(5)

(6)

Note that (4) is a nonlinear hyperbolic PDE representing the
transverse motion of the moving beam, whereas (6) is an ODE
describing the motion of the hydraulic actuator in compliance
with the transversal control force at . The term

in (4) is often called a nonlinear tension [9]. The
moving speed , to avoid a divergence of the solution, should
be smaller than the critical speed [9], [10]. Following [8], the
tension in (4) is given as:

(7)

where 0 for the horizontally translating beam, 1 for
the vertically translating beam, and and denote the gravi-
tational acceleration and the initial tension applied to the beam,
respectively. Note that the axial force may become a tensile and
compressive force during the deceleration 0 and acceler-
ation 0 , respectively, of the beam.

Since the tension is a spatiotemporally varying func-
tion, the tension variation has to be incorporated into the control
law design. Provided that there is no large external disturbance

to the system, can be assumed to be continuous and uni-
formly bounded, 0 ,

, and for all , , and
some a priori known constants , , , and

, where and
from (7). Considering practical situations such as a high-ten-
sioned beam under axial transport processing, it can be assumed
that the lower bound is larger than both and

due to the high tension limit. However, for some
visco-elastic materials such as synthetic rubber and synthetic
fiber, in which such a high tension is not required, the fluctuating

might not guarantee .
Now, consider the open-loop controlled beam system in

(4)–(6) with the assumption of 0. From (1) and (2),
the total vibrational energy of the beam system is given by

(8)

Applying the general theory for calculating the time rate of
change in [15] and [18] to in (8) yields

(9)

where
. That is, because the system involves a mass flow en-

tering in and out at the boundaries, the net change of the total
energy is the sum of the change in the control volume
and the energy flux at the boundaries.

Hence, the time derivation of in (8) is evaluated as

(10)

From (10), it is justified that, when the time rate of change of
is a positive value, it increases the mechanical energy

to a factor of . Hence, it should be properly handled in order
to decrease the vibration energy of the beam. And, it is also seen
that the open-loop system controlled only by a damper at the
right boundary is not effective to suppress the vibrations, since
the stability of the open-loop system is uncertain if determined
from (10), excepting the slowly-moving or stationary continua
system (i.e., 0). Further, in the process of derivation, the ef-
fect of the boundary disturbance from the uncontrolled span is
disregarded. Thus, to surmount the time-varying property and
the boundary disturbance as well, a novel control scheme is
required.

III. CONTROL LAW

The considered translating beam in (4)–(6) takes the form of
a distributed parameter system, not to mention the form of a
nonlinear time-varying system. The Lyapunov method can cope
with the time-varying nature of the system, and also the resulting
control law and stability arguments can be applied rigorously to
the distributed parameter system since introducing the spatial
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approximations can be avoided in the application of Lyapunov
concepts. Due to these reasons, the Lyapunov method is em-
ployed to design an effective and implementable robust adaptive
boundary controller for axially moving continua systems.

As shown in (4)–(6), the control mechanism is coupled with
the beam system because the controller is attached to the right
boundary of the controlled beam, on which the control force
is applied. To obtain the stability of coupled system (4)–(6), the
convergence of the boundary actuator should also be satisfied.
Hence, a modification of the total mechanical energy in (8) is
necessary in order to obtain an appropriate Lyapunov function
candidate for the coupled system.

The beam vibration energy in (8) and the following
function are equivalent [3]:

(11)

where 0 and
. Note that, according to (5) and Poincare’s

inequality, the stability of the hydraulic actuator system can be
analyzed by adding the slope term at to the mechanical
energy [2]. Also, since the boundary disturbance is really
bounded under the condition of the bounded energy of the
uncontrolled span (see Remark 3 following), the boundary
disturbance is assumed to be uniformly bounded by ,
that is., for all , where is an unknown positive
constant.

Thus, a positive–definite functional , as the total energy
of the moving beam system including the actuator, is defined as

(12)

where ,
and , and where is the adaptive estimate of

, which will be specified in the sequel. In the work, the func-
tional in (12) is considered as a Lyapunov function candi-
date in order to show the stabilization of the closed-loop system
by applying a robust adaptive boundary controller, which will
be designed. The last term in (12) is added as a pseudo-energy
to ensure that the desired final state,

, is the unique minimum of in (12).
From (5) and Poincare’s inequality, it is straightforward to con-
firm that the positive system parameters guarantee and
that indeed the global minimum of 0 is attained only in the
desired state.

Now, the robust control law for the right boundary control
force is proposed as

(13)

where the additional term is regarded as a new input signal
determined as based on robust control strategy [12] and is given
by

(14)

where and 0. The adap-
tation law in (14) is proposed as

(15)

where 0 and 0.
Let

and . By employing the derivation method used
in (9) and also by substituting the robust adaptive control laws
(13)–(15) into (6), the time rate of change of the energy func-
tional in (12) is evaluated as

(16)

where . To derive the
last term in (16), the following relationship is utilized [12]:

From in (11), the second term at the end
in (16) is negative, that is, 0.5, and so (16) becomes

(17)

Finally, the main theorem of this brief is established.
Theorem 1: Suppose

0 and 0. Then, the dynamics of
the closed-loop system in (4)–(6) controlled by the robust adap-
tive control laws in (13)–(15) is uniformly ultimately bounded,
that is

(18)

where 0 and

Since in (18) is uniformly bounded as
, the uniform ultimate boundedness region of
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can be made arbitrarily small by a suitable choice of , , and
.
From Theorem 1, it is concluded that the dynamics of the

closed-loop system is uniformly ultimately bounded. Also, note
that in (18) can be pushed to an arbitrarily small bounded-
ness region by making , sufficiently small and relatively
large. As the result, the uniform ultimate boundedness region of

can be made arbitrarily small [19], which implies that all
state variables of the closed-loop system decay to near zero in
time.

Remark 1: From Theorem 1, it is seen that, if the effect of
the disturbance from the uncontrolled span is ignored, that
is, 0 in (12), then the boundary controller alone can
make the closed-loop system exponentially stable, even without
employing the robust control term in (13). That is,

from (18) due to 0. Also, in that case, and
remembering the discussion in Section II, the open-loop system
with only the passive damper can be stable if the damping co-
efficient is sufficiently large. However, the damping value never
gives any effect to the slope term, as shown in (10), and this
means that however large the damping value, the performance
of the open-loop system cannot be improved [7]. But the point
of this study is only to show how to handle the effect of the
disturbance , since it cannot simply be neglected in actual
systems. Hence, considering the effect of , the closed-loop
system controlled by only without cannot guarantee sta-
bility, not to mention the exponential stability.

As mentioned in Remark 1, no stability conclusion can be
drawn from the Lyapunov function candidate in (12), since
the time derivation of in (18) may take positive values be-
cause of the last term , which implies that the disturbance

due to the transverse vibration of the uncontrolled part
causes an increase in the mechanical energy of the controlled
span part of the beam. Nevertheless, by Theorem 1, it has been
investigated that the proposed robust adaptive boundary con-
troller proposed assures the boundedness of all signals in the
closed-loop system and the convergence near to zero. However,
it should be noted that Theorem 1 is a sufficient condition but
not a necessary condition since the value of is impossible
to maintain as a positive value for all in an actual system, given
that it is close to a periodic pattern. Hence, Theorem 1 does not
mean that any system dominated by a varying tension with un-
known frequency pattern satisfying is al-
ways diverged. However, in actual processing lines, almost all
translating continua operate under a high-tensioned condition,
and so the proper control gains satisfying the conditions in The-
orem 1 can be assured.

Remark 2: Robust adaptive control laws (13)–(15) are given
for velocity , slope , and slope rate at ,
not using the system parameters and . By using an en-
coder (or photodiode) on the actuator and two laser sensors, the
actuator displacement and the slope on the actuator,
respectively, can be measured [6], [11]. The actuator velocity

and the slope rate can then be implemented by the
backward differencing of the signals. Here, an important point
to be noted is that the slope , as the control input signal,
should be measured on the controlled span side of the actuator
at , not on the uncontrolled span side. If the boundary

Fig. 3. Energies of uncontrolled translating beams tensioned as T = 10 :
v = 1 (solid). v(t) = 1+ 0:5 sin t (dashed). v(t) = 1+ 0:5 sin 40t (dotted).

slope is measured on the uncontrolled span side of the actuator,
the closed-loop system in (4)–(6) can be unstable, which will be
explained in the sequel.

Remark 3: Consider the uncontrolled span with the domain
of . In this case, the actuator position of be-
comes the left boundary of the span. Since the right boundary
at is fixed, and the time-varying condition at the left
boundary is really bounded due to the control action, the me-
chanical energy of the uncontrolled span is uniformly ultimately
bounded, which can be simply obtained by evaluating the time
derivation of the mechanical energy of the uncontrolled span
part. However, the uniform ultimate boundedness region cannot
be made arbitrarily small despite the control action at
since the proposed robust adaptive controller was designed only
by considering the dynamics of the controlled span.

The boundary controller proposed in (13)–(15) can also be
directly applied to the axially moving string system without any
modifications for ensuring the vibration reduction, since the dy-
namic model of a translating string with an arbitrarily varying
speed can be easily obtained by setting 0 in the beam model
(4)–(6).

IV. SIMULATIONS AND DISCUSSION

The effectiveness of the proposed control laws and the verifi-
cation of the introduced theories are demonstrated by numerical
simulations. As mentioned, the vibrations of the uncontrolled
span can be treated as actuator disturbance, and so only the
controlled span given as (4)–(6) is presented here. For numer-
ical simulations, consider the dimensionless variables [9], [10].
Then, the parameters of the beam and actuator in (4)–(6) are
given as 1, 1, 0.5, 0, 1, and
1. The disturbance from the uncontrolled span is unknown,
but for simulation purposes, is given.
Let the initial conditions of the beam satisfying the boundary
conditions in (5) be
and 0, and let the initial conditions of the proposed
controller be zero.
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Fig. 4. Simulation results of closed-loop controlled system tensioned as T =
10 with v(t) = 1 + 0:5 sin t under � = 0.3 (solid); and with v(t) = 1 +
0:5 sin 40t under � = 0.3 (dashed) and � = 2.5 (dotted). (a) Mechanical
energy. (b) Boundary displacement.

A. Effect of Varying Speed in Uncontrolled System

Fig. 3 depicts the three types energy of the dimensionless
beam in (4)–(6), disregarding the boundary disturbance and
without both control force and damper; that is, 0
in (6), under 10 and 1 (solid line),
(dashed line), and (dotted line), respec-
tively. As shown in Fig. 3, the energies of the beam systems
with 1 and remain level and slowly
decrease, which reason is that the material mass intro-
duces a stabilizing effect to the translating continua [8]. Note
that the difference of vibration energies between 1 and

is not so large, despite the varying con-
dition. However, the mechanical energy of the beam traveling
at the speed of diverges as time passes
due to the higher variation rate, as analyzed in Section II.
As mentioned in Remark 1, the passive damper alone is not
adequate to suppress the vibrations. In [7], it was shown that
the performance of the open-loop controlled system with a
higher damping value is inferior to that with a lower damping
value where the system might be unstable under the condition

Fig. 5. Simulation results of closed-loop controlled systems tensioned asT =
100 with v(t) = 1 + 0:5 sin 5t under � = 0.3 (solid); and with v(t) =
1 + 0:5 sin 40t under � = 2.5 (dotted). (a) Mechanical energy. (b) Boundary
displacement.

of a higher variation rate. Hence, in 2) following, the proposed
feedback boundary controller proposed will be applied to the
beam systems with the speed variations of
and .

B. Effect of Varying Speed in Controlled Systems

Fig. 4 shows the simulation results for the closed-loop con-
trolled beam system having the control gain 0.3 in (13)
about the two traveling speeds of (solid line)
and (dashed line), respectively, under
the assumption of 0, where the mechanical energy
and the boundary displacement at are depicted in (a) and
(b), respectively. As analyzed in Remark 1, in the case of the
closed-loop controlled system with , which
satisfies the conditions in Theorem 1, the vibrational energy is
exponentially reduced. However, in the case of the beam system
with a much faster variation , the vibra-
tion energy diverges despite the boundary controller, since the
faster varying property forbids the system conditions to satisfy
those in Theorem 1.
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Fig. 6. Simulation results of closed-loop controlled systems tensioned as T = 100 with v(t) = 1 + 0:5 sin 5t under � = 0.3 and  = 1 (solid); and with
v(t) = 1 + 0:5 sin 40t under � = 2.5 and  = 1 (dotted). (a) Mechanical energy. (b) Boundary displacement. (c) Disturbance estimation.

The unpredictably quickly varying patterns of the moving
speed can be somewhat overcome by selecting a higher value of
control gain , which was observed in [7]. Following this obser-
vation, the beam system with the traveling speed of

is simulated again by employing the active boundary
controller setting of 2.5 instead of 0.3, and which re-
sult is depicted as the dotted line in Fig. 4. Compared with the
vibration energy of the closed-loop controlled system with
0.3, the performance of the controlled system with the higher
control gain, 2.5, is significantly improved, and the diver-
gence no longer takes place, despite the fast variation. However,
Fig. 4 also indicates that the vibrations of the fast varying system
controlled by higher control gain still remain at a level, that
they do not converge to zero, and that the boundary displace-
ment is also continuously disturbed despite the disregarding of
the boundary disturbance.

C. Effect of Disturbance in Controlled Systems

Now consider the total span containing the uncontrolled span
shown in Fig. 2; that is, the unknown disturbance is surely
considered in the controlled system. Also, in actual situations,
such the worst phenomena as the dotted line in Fig. 3 might be
unreasonable, and then the initial tension applied to the beam
is given as 100 instead of 10 in the remainder.
Note that the closed-loop system with 100 can be easily
expected the exponential stability under the same control con-
ditions as those in 2) from Remark 1. To investigate whether
the same simulation results as those in Fig. 4 can get under
the boundary disturbance, the time-varying beam with

controlled by 0.3 (solid line) and with

controlled by 2.5 (dotted line), respectively,
was simulated without employing the robust control term ,
that is, 0 in (13), and the results are shown in Fig. 5.
From Fig. 5, it is clearly seen that the vibration energy of the
closed-loop system with controlled by

0.3 no longer converges to zero and remains level, not
considering the controlled system with faster variation,

. Comparing Fig. 5 with Fig. 4(b), it is also noted
that the magnitude of the boundary displacement was addition-
ally increased. Such deterioration of the control performance is
definitely due to the boundary disturbance from the uncon-
trolled span. Hence, as analyzed in Section III, when the effect
of the vibrations from the adjacent span is felt, the boundary
control law itself cannot guarantee the expected performance
in actual situations. To overcome the unknown undesired vibra-
tional effect from the uncontrolled span, the robust adaptation
control terms proposed in (14), (15) should be properly added
into the boundary control law in (13).

Now, the robust adaptive boundary controller in (13)–(15)
is employed under the same controlled conditions as those in
Fig. 5. The results are presented in Figs. 6 and 7, where the ro-
bust control gains are set to and 10, respectively,
and to and in common. In Fig. 7, the
robust adaptive controller is also applied to the faster varying
system with 2.5 in Fig. 4, and the results are depicted as
dashed line. Graphs (a), (b), and (c) in Fig. 6 and 7 denote the
mechanical energy, the boundary displacement, and the distur-
bance estimation, respectively. Note that the convergence of the
estimated parameter to the exact value is not essential in this
control scheme.
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Fig. 7. Simulation results of closed-loop controlled systems tensioned as T = 100 with v(t) = 1 + 0:5 sin 5t under � = 0.3 and  = 10 (solid); and with
v(t) = 1 + 0:5 sin 40t under � = 2.5 and  = 10 (dotted); and tensioned as T = 10 with v(t) = 1 + 0:5 sin 40t under � = 2.5 and  = 10 (dotted). (a)
Mechanical energy. (b) Boundary disturbance. (c) Disturbance estimation.

From Figs. 6(a) and 7(a), it is observed that, by adding the
robust term and the adaptive estimation into the boundary
control law , the effect of the undesired disturbance can be
considerably suppressed, and the situation becomes outstanding
when setting the higher control gain , as explained in The-
orem 1. Comparing Fig. 7(b) with Fig. 4(b), where not even
the boundary disturbance is contained, it is also noted that the
boundary displacement of the fast varying system with 10
controlled by the robust adaptive controller is no longer dis-
turbed and converges near to zero in a very stable manner as
time passes. This result explains that the robustness property of
the proposed controller is effective not only against boundary
disturbances but also against the uncertainly varying patterns of
the moving speed.

D. Effect of Control Gain in Closed-Loop System

From the discussion of 2), it was seen that the boundary con-
troller can attain a certain robustness against the time variations
of moving speed if a higher control gain is selected. Hence,
now it is investigated whether the control law in (13) can
eliminate the effect of undesired boundary disturbances only by
using the higher control gain without employing the robust
control term , (i.e., 0). For this, 5 is given to the
boundary control law , and a closed-loop system, under the
same parameter and disturbance conditions as those in Fig. 5,
is considered (the results are depicted in Fig. 8). Comparing
Fig. 8(a) with Figs. 5(a)–7(a), it is seen that the vibration en-
ergy of beam still remains at a level not converging near to zero
despite the higher control gain , the initial converging rate of

vibration energy increases though. Also, the difference of vi-
bration energies between and

is not so large, despite the varying condition.
However, the main result to be noted is shown in Fig. 8(b);
that is, that the magnitude of the boundary displacements is still
maintained at a high value and the disturbance are almost the
same, despite the time-varying condition. This means that the
effect of the boundary disturbance is still manifest, despite the
higher control gain .

Thus, it is concluded that the higher control gain itself
might be insufficient to overcome the effect of the boundary
disturbances without the cooperation of the robust control term

, even though the higher gain surely imparts a robustness to
the boundary controller . However, the robustness property
from the higher control gain should not be underestimated
in the control problem for continua systems, least to all, for
slowly-varying or stationary continua systems [7].

E. Instability of Uncontrolled Side Measurement

In Section III, it was mentioned that, if the boundary slope as
the control input signal is measured on the uncontrolled span
side of the actuator, the closed-loop system can be unstable.
Now suppose a downstream moving beam, that is, 0 in
(4)–(6), with disregarding the boundary disturbance and robust
control term ( 0 in (6)). Fig. 9 describes the simu-
lation results for the beam traveling at the downstream speed
of , in order to compare the open-loop
controlled system, operated by only the passive damper setting

50 (dotted line), with the closed-loop systems having the
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Fig. 8. Simulation results of closed-loop controlled systems tensioned asT =
100 with v(t) = 1 + 0:5 sin 5t under � = 5 (solid); and with v(t) =
1 + 0:5 sin 40t under � = 5 (dotted). (a) Mechanical energy. (b) Boundary
disturbance.

control gain 0.3 (dashed line) and 5 (solid line),
respectively. As shown in Fig. 9(a), the vibration energies of
the downstream moving beam with the proposed boundary con-
troller diverge as time passes even with the higher control value
given by 5, whereas the energy of the open-loop controlled
system is stabilized in a stable manner.

The boundary displacements of the closed-loop systems are
also gradationally increasing, as shown in Fig. 9(b). Hence,
on the basis of the robustness of against boundary distur-
bances, the robust control term in (14) is added again with
the same control gains as those used in Fig. 7 to compensate
the unstable boundary conditions. The simulation results are
depicted in Fig. 10, from which it is seen that the unstable
disturbance displacements at the boundary are significantly
reduced [Fig. 10(b)] Also, in the case of the closed-loop system
having 5, the vibrational energy has been stabilized more
quickly than that of the open-loop system, and converges to
zero as well without any divergence [Fig. 10(a)]. However, it is
also noted that the closed-loop system controlled by 0.3
is still unstable, despite the robust controller. Hence, when ap-
plying the proposed boundary controller to downstream moving

Fig. 9. Simulation results of open-loop and closed-loop controlled systems
with T = 100 and v(t) = �1� 0:5 sin 5t; d = 50 (dotted line), � = 0.3
(dashed line), and � = 3.5 (solid line). (a) Mechanical energy. (b) Boundary
displacement.

continua, the control gain should be carefully selected as a
suitable value, and, needless to say, the robust control term
should be added.

Figs. 9 and 10 inform that the control actuator in Fig. 2 should
have the input signals measured on the controlled span side of
the actuator, not on the uncontrolled span side, because oth-
erwise the closed-loop system might be unstable despite the
boundary control action. Hence, in the case of upstream moving
continua controlled by a right boundary actuator, if possible, it
is better to avoid a control scheme designed by using an input
signal measured on the uncontrolled span side of the actuator.

From the simulation results and discussions in 1)–5), it is fi-
nally summarized that, under the robust adaptive boundary con-
trol law proposed in (13)–(15), the vibrational energy of trans-
lating continua systems with an arbitrarily varying speed can be
stabilized and effectively dissipated by setting appropriate con-
trol gains.

V. CONCLUSION

In this brief, a robust adaptive boundary control scheme for
axially moving continua with an arbitrarily varying speed has
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Fig. 10. Simulation results of open-loop and closed-loop controlled systems with T = 100 and v(t) = �1� 0:5 sin 5t; d = 50 (dotted line), � = 0.3 and
 = 10 (dashed line), and � = 3.5 and  = 10 (solid line). (a) Mechanical energy. (b) Boundary displacement. (c) Disturbance estimation.

been proposed. For axially translating continua, three things are
essential to design an effective vibration controller: The span of
interest in the continua system is securely connected to the adja-
cent span and, hence, the effect from the motion of the adjacent
span should be properly treated for ensuring the vibration re-
duction of the span of interest; due to the continuity property of
the materials, the slope term on the controlled span side of the
actuator should be included in the Lyapunov energy functional,
especially, in the energy term of the actuator; and since an effec-
tive control law can be derived by using the time rate of change
of the Lyapunov functional, the slope rate at the right boundary
is then required as an input signal to the controller. By properly
handling this signal, the vibrations of translating as well as sta-
tionary continua can be more effectively suppressed.
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